BINARY SEARCH TREE

Biswajit Prasad
Assistant Professor
Department of Computer Science

Maharaja Manindra Chandra College
Calcutta 700 003

Binary Search Tree (BST)

A BST 1s a binary tree T with the following
conditions:
a)Key of every node 1n the right sub-tree of T 1s
greater then the Key at root.
b)Key of every node in the left sub-tree of T
1s less then the Key at root .
c) All Keys are distinct.

An Example

BST Operations

1.Search for a key

2.Insert a key 3.Delete a

key 4.Findmax &

Findmin

5.Find the Kth max or min

| Recursive Search

BST * search (T key, BST * t){ 1if (empty t(t))
return NULL; else if (key=—t—>1info)
return t;
else if (key < t=>info)
return (search (key,t—=2>left)); else
return (search (key, t=>right));

Non-recursive Search

BST * search (T key, BST * t) { BST
*cur ; int found;
if (empty t(t)) return NULL;
else{
cur=t; found=0;
while((cur!=NULL) & (!(found))){
if (key==cur = info) found=1;
else if (key < cur—>info)
cur=cur—>left;
else cur=cur—>right;

b

return cur;

j j

Insertion Example

"4
Insert 5 @ Insert 31

Deletion Example

e Delete 5

| 10

10

Deletion Example ...

¥
‘\

<

delete 10

delete 40
0
0é ©

|

Delete 50

—

Problem of BST

e Average case complexity of search, insertion and
deletion operations is O(log, n), where n is the no of
nodes in the tree.

* The height of a BST depends on the sequence of
insertion and deletion of keys.

* An extreme case:
Draw a BST for the following sequence of insertions:

1,2,3,4,5,6,7

Problems of BST ...

e

The worst case complexity of search, insertion and deletion are
O(n).

The tree degenerates into a linked list.

Remedy: Balanced tree.

e Height Balanced Tree (AVL Tree)

e Invented by Adelson-Velskii, Landis

e AVL tree is a BST where at each node
(including the root node) the left sub-tree
and the right sub-tree do not differ in height
by more than one.

Ih -hg| <=1

‘| Balance Factor

e Balance Factor (BF) of a node is the
difference between the heights of its left and
right sub-trees.

BF — hL_hR
BF =1 left high
BF = -1 right high

BF =0 equal high

AVL Tree Operations

1. Search a key
2. Find max & Find min Same as BST

3. Find Kt max & kt
min

4. Insert a Key
Insert / Delete as in BST:;

5. Delete a Key then rebalance the resultant tree
if necessary

Rebalancing needs Rotation

o

3 4

A s

Right Rotation

avltree * rotate-right (avltree * t) {
avltree * temp;

temp =t 2 left;

t = left = temp -2 right; temp 2
right = t; return temp;

s, Tnsertion / il
g o i ﬁ 1 a Examples - T
‘i},_ o OO .'E?
44&@&&:»\"}& db g 2] " @
> 1

Insertion Examples ...

Insertion Examples ...

Insertion Examples ...

=

B L

Insertion Examples ...

”(’/./ T es
Pad Ao
5® 3

190

Tree remains unbalanced even after
rotation

Right rotate the right child

G

7 \

o GD “ xé

Double rotation: here, right rotation followed by left rotation

T

1‘.\ o

wo
G0

Deletion Examples

2
=
a
K

eletion Examples ...

0o

= 4 (5] 0)
2 (3|1

Gl

T

Deletion Examples ...

e
(5]-1

Deletion Examples ...

¢t (5]

Deletion Examples ...

Deletion Examples ...

Conclusion

e Height of a height-balanced (AVL) Tree is guaranteed to be
O(log n), n being the no. of nodes.

* The insertion/deletion step takes at most O(log n) time.

* Each rebalancing step, i.e., rotation (possibly double rotation)
and updation of BF takes a constant amount of time.

* The rebalancing may go up to the root. Thus, there can be at
most O(log n) rebalancing steps.

* Thus the overall complexity of insertion/deletion is O(log n).

	BINARY SEARCH TREE
	Binary Search Tree (BST)
	An Example
	BST Operations
	Recursive Search
	Non-recursive Search
	Insertion Example
	Deletion Example
	Deletion Example …
	Deletion Example … (2)
	Delete 50
	Result 1
	Result 2
	Problem of BST
	Problems of BST …
	Height Balanced Tree (AVL Tree)
	Balance Factor
	AVL Tree Operations
	AVL Tree Example
	Rebalancing needs Rotation
	Right Rotation
	Slide 22
	Insertion Examples …
	Insertion Examples … (2)
	Insertion Examples … (3)
	Insertion Examples … (4)
	Insertion Examples … (5)
	Tree remains unbalanced even after rotation
	Right rotate the right child
	Double rotation: here, right rotation followed by left rotation
	Deletion Examples
	Deletion Examples …
	Deletion Examples … (2)
	Deletion Examples … (3)
	Deletion Examples … (4)
	Deletion Examples … (5)
	Conclusion

